Structure {Paper03}

[SPM07-01]

(a) (i)

Experiment I	28.0	36.0
Experiment II	29.0	25.0
Experiment III	27.0	32.0
Experiment IV	30.0	27.0

(ii)

Experiment	Thermometer reading/°C	
	Initial	Final
I	28.0	36.0
II	29.0	25.0
III	27.0	32.0
IV	30.0	27.0

(iii)

Exothermic reaction	Endothermic reaction
I and III	II and IV

- (b)(i) 1. The size of polystyrene cup
- 2. The total volume of mixture in the cup
- 3. the concentration of sodium hydroxide
- (ii) When sodium hydroxide dissolves in water, the heat is released and the temperature rises
- (c) (i) Temperature Change: 4 °C

Reason 1: heat energy is absorb from the surrounding. This causes the energy content of the products to be higher than the energy content of the reactants

Reason 2: heat energy is required to separate the particles in crystalline ammonium chloride during the dissolving process.

- (ii) The dissolving process of ammonium chloride causes the change in temperature.
- (d) 1. Sulphuric acid: 38 °C

2. Nitric acid : 32 °C

3. Ethanoic acid : 30 °C

- (e) (i) 1. A gas is released, carbon dioxide
- 2. the temperature decreases
- 3. the total volume of the liquid in the polystyrene container increases
- (ii) 1. The heat of reaction is positive endothermic reaction
- 2. the total energy of the products is higher than the total energy of the reactants.

(iii)

Volume of gas/cm3

[MRSM03-02]

- (a) 1. Zinc powder dissolved in the solution
- 2. Blue copper(II) chloride change to colourless
- 3. brown metal is formed

(b) Initial temperature : 29.0 °C Maximum temperature : 39.0 °C Temperature change : 10.0 °C

- (c) Heat by experiment, $Q = mc\theta = 25.0 \text{ X} 4.2 \text{ X} 10 = 1050 \text{ J} = 1.05 \text{ kJ}$
- (d) 1. Reaction is exothermic reaction.
- 2. the final temperature is higher than initial temperature
- 3. the product formed is copper and zinc chloride

(e)

- (f) 1. Temperature in 2(e) is higher than temperature in 2(b)
- 2. the distance between Magnesium and Copper is more further than the distance between Zinc and copper in Electrochemical Series

[SPM06-01]

(a) Initial temperature of mixture : 28.0 °C Highest temperature of mixture : 40.0 °C Change in temperature : 12.0 °C

(b)

Temperature/°C	Experiment	
	I	II
Initial temperature of mixture	28.0	T_1
Highest temperature of mixture	40.0	T_2
Change in temperature	12.0	$T_3 = T_2 - T_1$

- (c) the heat of neutralisation of a weak acid and a strong alkali is smaller than the heat of neutralisation of a strong acid with strong alkali.
- (d) 13.0 C°
- (e) this is enable the change in temperature to measured. The change in temperature is needed to calculate the heat of neutralisation.
- (f) change of temperature
- = highest temperature of mixture initial temperature of mixture
- (g) 1. The original vinegar smell of ethanoic acid slowly disappear
- 2. a colourless, warmer final mixture is obtained
- 3. the polystyrene cup became warmer
- (h) 1. The concentration of acid and alkali used
- 2. the volume of acid and alkali used
- 3. the type of container that is used to hold the mixture
- (i) (i) The heat of neutralisation is the amount of heat released when one mole of water is produced
- (ii) Experiment I uses weak acid whereas experiment II uses a strong acid. The heat of neutralisation of a weak acid by a strong alkali is less than the heat of neutralisation of a strong acid by strong alkali. This is because during the neutralisation of a weak acid such as ethanoic acid, part of the heat is used to dissociate the acid molecules.

(j)

Name of acid	Heat of neutralization / kJ mol-1	Type of acid
Ethanoic acid	- 50.3	Weak acid
Hydrochloric acid	- 57.2	strong acid
Methanoic acid	- 50.5	Weak acid